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Exact Finite-Size Study of the 2D OCP at 1=4
and 1=6
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An exact numerical study is undertaken into the finite-N calculation of the free
energy and distribution functions for the two-dimensional one-component
plasma. Both disk and sphere geometries are considered, with the coupling 1 set
equal to 4 and 6. Extrapolation of our data for the free energy is consistent with
the existence of a universal term (/�12) log N, where / denotes the Euler charac-
teristic of the surface, as predicted theoretically. The exact finite-N density
profile is shown to give poor agreement with the contact theorem relating the
density at contact and potential drop to the pressure in the thermodynamic
limit. This is understood theoretically via a known finite-N version of the
contact theorem. Furthermore, the ideas behind the derivation of the latter
result are extended to give a sum rule for the second moment of the pair correla-
tion in the finite disk, which in the thermodynamic limit converges to the
Stillinger�Lovett result.

KEY WORDS: Coulomb gas; one-component plasma; symmetric polyno-
mials; finite-size corrections; second-moment sum rules.

1. INTRODUCTION

The two-dimensional one-component plasma (2dOCP) is a model in clas-
sical statistical mechanics which consists of N mobile point particles of
charge q interacting on a surface with uniform neutralizing background
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charge density. The pair potential 8(r� , r� $) between particles is the solution
of the Poisson equation on the particular surface. In the plane

8(r� , r� $)=&log( |r� &r� $|�l ) (1.1)

where l is some arbitrary length scale which will henceforth be set to unity.
With the potential (1.1) and a uniform background of charge density &\b

inside a disk of radius R (\b=N�?R2) the corresponding Boltzmann factor,
which consists of the particle�particle, particle�background and back-
ground�background interaction, is given by

e&1N 2((1�2) log R&3�8)e&?1\b � N
j=1 |r� j |

2�2 `
1� j<k�N

|r� k&r� j |1 (1.2)

where 1 :=q2�kBT is the coupling. We remark that with 1�2 an odd
integer, (1.2) is proportional to the absolute value squared of the celebrated
Laughlin trial wave function for the fractional quantum Hall effect.(14)

At the analytic level our knowledge of the properties of the 2dOCP
comes from two main sources. First, for the special coupling 1=2, the
exact free energy and correlation functions can be calculated for a number
of different geometries.(1, 5, 3, 12) Second, the 2dOCP is an example of a
Coulomb system in its conductive phase and as such should obey a number
of sum rules (see, e.g., ref. 16) which typically represent universal properties
of such a system. We remark also that the exact solutions at 1=2 have
been an important source of inspiration to identify universal properties.

In this paper we develop exact numerical solutions at the special
couplings 1=4 and 1=6 for values of N up to 11 and 9 respectively. By
undertaking this study we are able to test the prediction of Jancovici et
al.(11) that the expression for the free energy F as a function of the number
of particles N be of the form

;F=AN+BN 1�2+
/
12

log N+ } } } (1.3)

where / denotes the Euler characteristic of the surface (/=1 for a disk,
/=2 for a sphere). Furthermore we are able to investigate the rate of
convergence of the one and two point correlation to their thermodynamic
values, as well as the accuracy of certain sum rules in the finite system. In
fact the latter line of investigation leads us to a new sum rule valid for
general & dimensional multicomponent Coulomb systems in a spherical
domain, which relates to the second moment of the density�charge correla-
tion function in the finite system. We recall (see, e.g., ref. 16) that in the
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infinite system the second moment of the charge�charge correlation func-
tion is of a universal form known as the Stillinger�Lovett condition. Indeed
our sum rule (4.24) below gives the finite size correction to this universal
form in systems with a background.

As an outline of the paper, we note here that in Section 2 formulas are
presented specifying the partition function and one and two point distribu-
tion functions for the disk and sphere geometries, with the coupling an
even integer, in terms of certain expansion coefficients. These expansion
coefficients are in general computationally expensive, but reasonably
efficient algorithms exist in the literature applicable to the cases 1=4
and 6. Our numerical results our presented in Section 3. The new sum rules
are derived and discussed in Section 4, while Section 5 concludes with a
summary.

2. FORMALISM

Our interest is in the exact numerical computation of the partition
function and one and two-point correlation functions for the 2dOCP in a
disk and on the surface of a sphere. In the former system the Boltzmann
factor is given by (1.1). Two versions of this model will be considered one
in which the particles are confined to a disk of radius R (the same disk
which contains the smeared out neutralizing background), and the other
in which the particles are can move throughout the plane. These will be
referred to as the hard disk and soft disk respectively. In the latter system
the Boltzmann factor (1.1) is assumed valid also for |r� i |�R, even though
the one body potential ?\b |r� i |2�2 is not the correct potential for the
coupling between a particle and the background in this region (according
to Newton's theorem outside the disk the background creates the same
potential as a charge &N at the origin, so the correct Coulomb potential
outside the disk is N log |r� i | ).

On the surface of the sphere the Boltzmann factor is given by

\ 1
2R+

N1�2

e1N2�4 `
1� j<k�N

|ukv j&ujvk |1 (2.1)

where u :=cos(%�2) ei,�2, v :=&i sin(%�2) e&i,�2 are the Cayley�Klein param-
eters and (%, ,) are the usual spherical coordinates. For our purpose it is
convenient to consider the stereographic projection of this system from the
south pole of the sphere to the plane tangent to the north pole. This is
specified by the equation

z=2 Rei, tan
%
2

, z=x+iy (2.2)
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We then have

\ 1
2R+

N1�2

e1N2�4 `
1� j<k�N

|uk vj&ujvk |1 dS1 } } } dSN

=\ 1
2R+

N1�2

e1N2�4 `
N

j=1

1
(1+|zj |

2�(4R2))2+1(N&1)�2

_ `
1� j<k�N }

zj&zk

2R }
1

dr� 1 } } } dr� N (2.3)

2.1. The Case 1=4p

For 1=4p, integrals over the Boltzmann factors (1.1) and (2.3) can be
performed from knowledge of the coefficients in the expansion

`
1� j<k�N

(zk&zj )
2p=:

+

c (N )
+ (2p) m+(z1 ,..., zN ) (2.4)

where +=(+1 ,..., +N ) is a partition of pN(N&1) such that

2p(N&1)�+1� } } } +N�0

and

m+(z1 ,..., zN )=
1

> i mi !
:

_ # SN

z +1
_(1) } } } z +N

_(N )

is the corresponding monomial symmetric function (the mi denote the
frequency of the integer i in the partition). The key point for the utility of
(2.4) is that with zj=rj ei%j, the m+ are orthogonal with respect to angular
integrations:

|
�

0
dr1 r1 g(r2

1) } } } |
�

0
drN rN g(r2

N )

_|
2?

0
d%1 } } } |

2?

0
d%N m+(z1 ,..., zN ) m}(z1 ,..., zN )

=$+, }
N !

> i m i!
?N `

N

l=1

G+l
(2.5)

where G+l
:=2 ��

0 dr r1+2+l g(r2) for arbitrary g(r2). Thus, after also noting that

`
j<k

|zk&zj |
4p= `

j<k

(zk&zj )
2p `

j<k

(z� k&z� j )2p (2.6)
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we see that for 1=4p

IN, 1[ g] :=|
R2

dr� 1 g(r2
1) } } } |

R2
dr� N g(r2

N ) `
j<k

|r� k&r� j | 1

=N! ?N :
+

(c (N )
+ (2p))2

> i mi !
`
N

l=1

G+l
(2.7)

In the case p=1 this formalism has been utilized by Samaj et al., (18) who
furthermore presented an algorithm for the computation of [c+] in this
case. Let us now consider this latter point.

In general the coefficients c (N )
+ (2p) can be calculated from the formula

c (N )
+ (2p)=

1
(2?)N |

2?

0
d%1 e&i+1%1 } } } |

2?

0
d%N e&i+N %N `

j<k

(ei%k&e i%j )2p (2.8)

which follows from (2.4). Since we require |+|= pN(N&1), the integral over
%N can be performed by changing variables %j [ %j+%N ( j=1,..., N&1) to
give

c (N )
+ (2p)=

1
(2?)N&1 |

2?

0
d%1 e&i+1%1 } } } |

2?

0
d%N&1 e&i+N&1 %N&1

_ `
N&1

j=1

(1&ei%j )2p `
1� j<k�N&1

(ei%k&ei%j )2p (2.9)

The simplest case is N=2, when the sum over pairs in (2.9) is not
present. Expanding (1&ei%1)2p according to the binomial theorem gives

c (2)
+ (2p)=(&1) +1 \2p

+1+
where +1= p, p+1,..., 2p (for +1= p we have +1=+2 and thus m+1

=2,
while in all other cases +1{+2 and so m+1

=m+2
=1). Substituting in (2.7)

we see, after some minor manipulation, that

|
R2

dr� 1 g(r2
1) |

R2
dr� 2 g(r2

2) |r� 2&r� 1| 4p

=?2 :
2p

+=0
\2p

+ +
2

|
�

0
dr r +g(r) |

�

0
dr r2p&+g(r) (2.10)

To calculate c (N )
+ (2p) via this method for a general value of N would

require expanding 1
2 (N&1) N products via the binomial theorem, giving a
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total of ( 1
2 (N&1) N )2p+1 terms to determine each value of c+ . Thus for a

given value of N the complexity increases exponentially with the coupling p.
As we want to determine the c+ for a sequence of values of N as large as
possible, we are therefore restricted to the case p=1.

In fact the case p=1 allows (2.8) to be computed without using the
binomial expansion.(18) Instead one uses the Vandermonde formula for the
product of differences as a determinant to expand the products in (2.8).
This gives

c (N )
+ (2)= :

P # SN

=(P) :
Q # SN

=(Q) `
N

k=1

$P(k)+Q(k)&2, +k

= :
P # SN

=(P) :
Q # SN

`
N

k=1

$P(k)+k&2, +Q(k)
(2.11)

which is the formula we used to compute our data in the case p=1 for
N=3,..., 10.

2.2. The Case 1=4p+2

With 1=4p+2, decomposing the product of differences analogous to
(2.6) shows that we must consider the product of differences raised to an
odd power. The analogue of (2.4) is then the expansion

`
1� j<k�N

(zk&zj )
2p+1=:

+

c (N )
+ (2p+1) A(z +1+N&1

1 z +2+N&2
2 } } } z+N

N )

(2.12)

where 2p(N&1)�+1�+2� } } } �+N�0, �N
j=1 +j= pN(N&1) and A

denotes antisymmetrization. Factoring out the antisymmetric factor
> j<k (zk&zj ) from both sides then gives

`
1� j<k�N

(zk&zj )
2p=:

+

c (N )
+ (2p+1) S+(z1 ,..., zN ) (2.13)

where S+ denotes the Schur polynomial indexed by the partition +.
Furthermore, analogous to the orthogonality (2.5) we have

|
�

0
} } } |

�

0
`
N

l=1

drl rl g(r2
l ) |

2?

0
d%1 } } } |

2?

0
d%N

_ `
j<k

|zj&zk |2 S+(z1 ,..., zN ) S}(z1 ,..., zN )=$+, }N ! ?N `
N

l=1

G+l+N&l

(2.14)
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Thus for 1=4p+2, instead of (2.7) we have

IN, 1[ g]=N ! ?N :
+

(c (N )
+ (2p+1))2 :

N

l=1

G+l+N&l (2.15)

According to (2.12) the coefficients c (N )
+ (2p+1) can be computed from the

formula (2.8) with +j [ +j+N& j and 2p [ 2p+1, or equivalently (2.9)
with the same replacements. In the case N=2 this latter formula gives

c (2)
+ (2p+1)=(&1) +1+1 \2p+1

+1+1+
with +1= p,..., 2p. This in turn implies that the formula (2.10) again holds
with 2p [ 2p+1.

To obtain data for consecutive values of N, the computationally sim-
plest case is p=1. However algorithms based on (2.8) (with +j [ +j+N& j
and 2p [ 2p+1) are inferior to methods that determine c (N )

+ (3) from
(2.13).(8, 7, 19) The most efficient algorithm appears to be the one of Scharf
et al., (19) where the coefficients c (N )

+ (3) are determined up to N=9.
Fortunately the authors of ref. 19 have kindly supplied us with their data
(up to N=8), so we do not need to repeat the calculation.

2.3. The Sphere

The Boltzmann factor for the sphere, stereographically projected onto
the plane, is given by the r.h.s. of (2.3). Thus, with r� j [ 2Rr� j we require

g(r2)=(1+r2)&(N&1) 1�2&2 (2.16)

in the integral (2.7). However, computational savings can be obtained by
first noting that because the sphere is homogeneous, one particle can be
fixed at the north pole, reducing the number of integrals from N to N&1
(we must also multiply by ?��the area of the surface of a sphere of radius 1�2).
Thus we have

|
(R2)N

dr� 1 } } } dr� N `
N

i=1

1
(1+|zi |

2) (N&1) 1�2+2 `
1� j<k�N

|zk&zj |
1

=? |
(R2)N&1

dr� 1 } } } dr� N&1 `
N&1

i=1

|zi |
1

(1+|zi |
2) (N&1) 1�2+2 `

1� j<k�N&1

|zk&z j |
1

(2.17)
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and so should choose

g(r2)=
r1

(1+r2) (N&1) 1�2+2 (2.18)

in (2.7).
With g(r2) given by (2.18), the formulas (2.7) and (2.15) show that at

1=4 and 1=6 the canonical partition function

ZN, 1 :=
1

N ! |
(R2)N

dr� 1 } } } dr� N e&;U

can be represented by the series

Zsphere
N+1, 4=

e (N+1)2?N+1

N+1
: (c (N )(2))2 1

> i mi !
`
N

i=1

(+i+2)! (2N&+i&2)!
(2N+1)!

(2.19)

Zsphere
N+1, 6=\ (N+1)�2

b (N+1) (N+3)�2 e3(N+1)2�2?3(N+1)�2 : (c(N )(3))2

_ `
N

k=1

(3+N++k&k)! (2N&3&+k+k)!
(3N+1)!

(2.20)

To obtain these formulas use has been made of the definite integral

|
�

0

r p

(1+r)q dr=
1 ( p+1) 1 (q& p&1)

1 (q)
(2.21)

Because the sphere is homogeneous, the two-point distribution
\(2)((%, ,), (%$, ,$)) can be computed with one particle at the north pole
(%$=0 say). We then have

\(2)((%, ,), (%$, ,$))=\(2)(%)

so the two-point function can be computed from an integral of the form
(2.7). In fact with g(r2) given by (2.16) we have

\(2)(%)=
1

4R2

1
IN, 1[ g]

lim
x$ � 0

g(x2) g(x$2)
4?2xx$

(1+x2)2 (1+x$2)2 $2IN, 1[ g]
$g(x2) $g(x$2)

(2.22)
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were x=tan(%�2). For 1=4 this gives

\(2)(%)=\2
b

(2N&1)!
N 2(1+x2)2N&2

_
_�+, +N=0 (c (N )

+ (2))2 (1�> i mi !) >N
i=1 +i ! (2N&2&+i )!

_�N&1
k=1 (x2+k�(+k ! (2N&2&+k)!)) &

�+ (c (N )
+ (2))2 (1�> i mi !) >N

i=1 +i ! (2N&2&+i )!

(2.23)

while for 1=6 we deduce that

\(2)(%)=\2
b

(3N&2)!
N 2(1+x2)3N&3 (3N&2)

_
_�+, +N=0 (c (N )

+ (3))2 >N
i=1 (+i+N&i)! (2N&3&+i+i)!

_�N&1
k=1 (x2(+k+N&k)�((+k+N&k)! (2N&3&+k+k)!))&

�+ (c (N )
+ (3))2 >N

i=1 (+i+N&i)! (2N&3&+i+i)!
(2.24)

2.4. The Disk

In the case of the disk, (1.2) with r� j [ Rr� j shows we require

g(r2)=/(r) e&1N |r� j |
2�2 (2.25)

where /=1 for r2<1 and zero otherwise in the case of the hard disk, while
/=1 for all r in the case of the soft disk. Thus from (2.7) we have at 1=4

Zsoft disk
N, 4 =e3N 2�2 \ 1

2N+
N2

?N :
+

(c (N )
+ (2))2 \`

i

mi !+
&1

`
N

i=1

+i ! (2.26)

Zhard disk
N, 4 =e3N 2�2 \ 1

2N +
N2

?N :
+

(c (N )
+ (2))2 1

> i mi !
`
N

i=1

#(+i+1, 2N ) (2.27)

while at 1=6 use of (2.15) gives

Zhard
N, 6 =\N�2

b N &3N2�23&N(3N&1)�2?3N�2e9N2�4

_:
+

(c (N )
+ (3))2 `

N

k=1

#(+k+N&k+1, 3N ) (2.28)
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with the soft disk case obtained by replacing the incomplete gamma func-
tions by complete gamma functions.

Unlike the situation with the sphere, the density is a non-constant
function in the disk geometry. Now, with g(r2) given by (2.18) we have

\(1)(r)=
g(r2)
2?r

$ log Zdisk
N, 4

$g(r2)

At 1=4 this gives

\(1)(r)=2\be&2?\br2

_
_�+ (c (N )

+ (2))2 (1�> i mi !) >N
j=1 #(+j+1, 2N )

_�N
k=1 ((2?\b r2) +k�#(+k+1, 2N )) &

�+ (c(N )
+(2))2 (1�> i mi !) >N

j=1 #(+ j+1, 2N )
(2.29)

while at 1=6 one obtains

\(1)(r)=3\be&3?\br2

_
_�+ (c (N )

+ (3))2 >N
j=1 #(+j+N& j+1, 3N )

_�N
k=1 ((3?\br2) +k+N&k�#(+k+N&k+1, 3N ))&

�+ (c (N )
+ (3))2 >N

j=1 #(+j+N& j+1, 3N )
(2.30)

The corresponding formulas for the soft disk are obtained by replacing the
incomplete gamma functions by complete gamma functions.

Finally, we consider the two-point function in the disk geometry. In
general this quantity is not just a function of the distance between particles,
and so we cannot use the formalism based on the orthogonalities (2.5) and
(2.14). However, with one of the particles fixed at the origin (r� $=09 say) we
have \(2)(r� , r� $)=\(2)(r), so in this case the formalism used to compute the
densities can again be used. Thus using the general formula

\(2)(r)=
1

ZN, 1
lim
r$ � 0

g(r2) g(r$2)
4?rr$

$2ZN, 1

$g(r2) $g(r$2)

we find for the hard disk case

\(2)(r)=4\2
be&2?\br2

_
_�+, +N=0 (c (N )

+ (2))2 (1�> i mi !) >N&1
j=1 #(+j+1, 2N )

_�N&1
k=1 ((2?\br2) +k�#(+k+1, 2N )) &

�+ (c (N )
+ (2))2 (1�> i m i!) >N

j=1 #(+ j+1, 2N )
(2.31)
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\(2)(r)=9\2
be&3?\br2

_
_�+, +N=0 (c (N )

+ (3))2 >N&1
j=1 #(+j+N& j+1, 3N )

_�N&1
k=1 ((3?\br2) +k+N&k�#(+k+N&k+1, 3N ))&

�+ (c (N )
+ (3))2 >N

j=1 #(+ j+N& j+1, 3N )

(2.32)

for 1=4 and 1=6 respectively. Again the corresponding results for the
soft disk are obtained by replacing the incomplete gamma functions by
complete gamma functions.

3. NUMERICAL RESULTS

3.1. Free Energy��Sphere Geometry

In the Introduction it was commented that the free energy is expected
to have a large N expansion of the form (1.3) with /=2 in sphere
geometry. In fact the constant B in (1.3), which is a surface free energy
should be identically zero in sphere geometry, so we expect a large N
expansion of the form

;F=AN+ 1
6 log N+C+ } } } (3.1)

As noted by Jancovici et al., (11) the validity of (3.1) can be explicitly
demonstrated at 1=2 because of an exact solution due to Caillol.(3) The
mechanism for the exact solution can be seen within the present formalism.
Thus, at 1=2 we require the coefficients c (N )

+ (1) in (2.12). But this follows
from the Vandermonde expansion (recall (2.11)), which gives c (N )

+ (1)=1
for +=0N and c (N )

+ (1)=0 otherwise. Substituting in (2.15) with g(r2) given
by (2.18), and making use of (2.21) we thus obtain(3)

Zsphere
N, 2 =?N�2N N�2\&N�2

b eN2�2 `
N

k=1

(N&k)! (k&1)!
N !

(3.2)

This substituted into the general formula

;FN, 1=&log ZN, 1 (3.3)

leads to the expansion(11)

;F=N;f2+ 1
6 log N+ 1

12&2`$(&1)+o(1) (3.4)
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where ;f2= 1
2 log(\b �2?2). We remark that by introducing the Barnes G

function according to

G(z+1)=1 (z) G(z), G(1)=1

we can write

`
N

k=1

(k&1)!=G(N+1)

The large N expansion of the Barnes G function is known to be(2)

G(N+1)t
N 2

2
log N&

3
4

N 2+
N
2

log 2?

&
1

12
log N+`$(&1)&

1
720N 2+O \ 1

N 4+ (3.5)

This together with Stirling's formula allows us to extend (3.4) to the
expansion

;F=N;f2+
1
6

log N+
1

12
&2`$(&1)+

1
180N 2+O \ 1

N 4+ (3.6)

In the cases 1=4 and 1=6, by following the numerical procedure
detailed in the previous section, we have been able to compute the partition
functions (2.19) and (2.20) up to 11 and 9 particles respectively. The results
are listed in Table I. Our results are presented in decimal form. However
the terms in the summations of (2.19) and (2.20) are all rational numbers,
and we have also calculated the sum itself as a rational number. A point
of interest is the factorization of the denominator and numerator of the
rational number. The exact result (3.2) shows that at 1=2 only small
integers occur in this factorization. However our exact data shows that this
feature is no longer true at 1=4 or 1=6. For example, at 1=4 and with
N=9 we find that the summation in (2.19) is given by the ratio of primes

19 } 23 } 31 } 404431651134013 } 56827
2283125778118138178

To analyze our data we first sought fitting sets of consecutive values
of N to the ansatz

;F1, N=A1N+K1 log N+C1 (3.7)
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Table I. Exact Numerical Computation of the Expressions (2.19) and (2.20)
(in the Latter Case We Have Set \b=1), and the Corresponding Free Energy (3.3)

N ZN, 4 ;FN, 4

3 9.770695753081390794542103296367E+02 &6.884557862719257767291929292830
4 1.081868103379375397165672403770E+04 &9.289029644211538110263324038604
5 1.209528877878741526102013133936E+05 &11.70315639163470461293716934684
6 1.360835037494310939624360869217E+06 &14.12360906745006986750189927991
7 1.537846289459171693753614603094E+07 &16.54847857521316551691816164401
8 1.743564157878398325393942744018E+08 &18.97661212873318180330363390257
9 1.981770773388678655915061613417E+09 &21.40725661197234419004446417460

10 2.257011016434890100740949944465E+10 &23.83989230877186989649422160272
11 2.574639922522006241714385546434E+11 &26.27414571135846506646694529338

N ZN, 6 ;FN, 6

2 781.80154948970530457541038293910180 &6.661600935308419284761353568226471
3 24731.016946702464115291740435512837 &10.115813481655518642906626162676076
4 798906.45662411908447403801186279894 &13.590999142330226359670889161470696
5 25990836.664099377843271224794515169 &17.073254597869416657276355484106596
6 851167572.30792422833993160492670601 &20.562119579383207945093207167461793
7 27989023411.960800446597844273994987 &24.055078249259894430456119939885817
8 923260788226.64381072982338145761830 &27.551177575665397081224942401207047
9 30529687045074.352434196537904510620 &31.049720671888250916196597607309575

The results are contained in Table II. Notice that at 1=4 the value of the
free energy per particle A appears to have converged to 3 decimal place
accuracy, while the value of K appears similarly to be converging, with the
final value in the table differing from 1�6 only in the third decimal. The
general trends are the same for the 1=6 data, although the convergence
rate (as determined by the difference between sequential values) is slower.

Table II. Fitting the Values of ;F1, N with N as Specified,
Taken from Table I, to the Ansatz (3.7)

N A4 K4 C4 A6 K6 C6

3, 4, 5 &2.447509 0.149600 0.293616 &3.526411 0.178065 0.267797
4, 5, 6 &2.448705 0.154963 0.290968 &3.506699 0.109543 0.283938
5, 6, 7 &2.449038 0.156787 0.289696 &3.515359 0.145316 0.269664
6, 7, 8 &2.449271 0.158300 0.288384 &3.516438 0.152316 0.263596
7, 8, 9 &2.449423 0.159440 0.287231 &3.516820 0.155176 0.260704

8, 9, 10 &2.449524 0.160290 0.286264
9, 10, 11 &2.449594 0.160960 0.285428
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Table III. Fitting the Values of ;F1, N with N as Specified,
Taken from Table I, to the Ansatz (3.8)

N A4 K4 C4 D4 A6 K6 C6 D6

3, 4, 5, 6 &2.450743 0.175200 0.258672 0.049566 &3.5382 0.3594 0.0572 0.4839
4, 5, 6, 7 &2.449773 0.165568 0.2740449 0.025973 &3.5086 0.0654 0.4121 0.2363
5, 6, 7, 8 &2.449905 0.167146 0.2712323 0.031065 &3.5193 0.1932 0.1842 0.1417
6, 7, 8, 9 &2.449914 0.167268 0.2709949 0.031065 &3.5180 0.1748 0.2199 0.0779

7, 8, 9, 10 &2.449896 0.166989 0.2715743 0.029956
8, 9, 10, 11 &2.449892 0.166917 0.2717321 0.029634

Next we sought fitting four consecutive values of N to the ansatz

;F1, N=A1N+K1 log N+C1+D1 �N (3.8)

The results of this fit are presented in Table III. At 1=4 this markedly
improves the convergence rate, with the final estimate of K now differing
from 1�6 by only 3 parts in 104. However at 1=6 the convergence rate
is in fact worsened, indicating some illconditioning when the extra free
parameter is introduced. Note also that the coefficient of 1�N in both cases
appears to be non-zero, as distinct from the situation at 1=2 exhibited by
the analytic result (3.6).

Finally, we sought to estimate from our data an accurate as possible
value of the free energy per particle, ;f1 say. For this purpose we fitted the
data to the ansatz

;F1, N=A1N+ 1
6 log N+C1+D1 �N+{E1�N 2,

0,
1=4
1=6

(3.9)

thus assuming the universal term in (3.1). Four free parameters are used
at 1=4, while only 3 free parameter are used at 1=6, in keeping with
observed illconditioning when a fourth parameter is introduced. Our
results are presented in Table IV, where ;f1 is determined by A1 . We see
that there at 1=4 we appear to have convergence to 6 digits with the
estimate

;f4=&2.449884 } } } (3.10)

while at 1=6 our final estimate is

;f6=&3.5175 } } } (3.11)

accurate to 4 digits.
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Table IV. Fitting the Values of ;F1, N with N as Specified,
Taken from Table I, to the Ansatz (3.9)

N A4 C4 D4 E4 A6 C6 D6

3, 4, 5, (6) &2.4501031 0.275576 0.012460 0.026276 &3.513916 0.205966 0.110598
4, 5, 6, (7) &2.4498406 0.271639 0.031880 0.005215 &3.518863 0.250494 0.011648
5, 6, 7, (8) &2.4498809 0.272364 0.027574 0.003235 &3.517146 0.231609 0.063153
6, 7, 8, (9) &2.4498875 0.272503 0.026605 0.005465 &3.517466 0.235770 0.049709

7, 8, 9, (10) &2.4498842 0.272423 0.027240 0.003788 &3.517540 0.236870 0.045600
8, 9, 10, 11 &2.4498841 0.272420 0.027272 0.003695

We note that there is some early literature on estimating ;f4 and ;f6

from exact small N numerical data.(13) Using only the values of ;FN, 1 for
N=1, 2 and 3, the quantity

;f� 1=;f1+\31
8

+1++
1
4

log ?\b&log \b

was estimated for 1=4, 6,..., 10. In particular, at 1=4 and 1=6 these
estimates of ;f1 give

;f4r&2.1585, ;f6r&3.330

which differ from our estimates (3.10) and (3.11) in the first decimal place.
One can argue that it is hazardous to obtain conclusions on the value

of the bulk free energy from our data computed for N small than 12 par-
ticles. However as it will be seen in next section we obtain the same bulk
value for the free energy in the disk case as in the sphere. Futhermore using
Eq. (3.2) one can compute the free energy in the 1=2 case for a small
number of particles and fit the value to the ansatz (3.7). It is remarkable
that fitting even with small values of N=3, 4, 5 one obtains an estimation
of the bulk free energy ;f2=log(\b �2?2)�2 accurate to 3 digits. For com-
parison with the final estimates for f4 and f6 , using ansatz (3.9) and the
data for N=8, 9, 10, 11 we found, putting \b=?,

;f2=&0.9189384 } } } (3.12)

accurate to 6 digits. The reason why we obtain accurate results for the bulk
free energy for small values of N can be traced back to the fact that in all
cases (1=2, 4, 6) the coefficients D1 and E1 are small compared to A1 .
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3.2. Free Energy��Disk Geometry

For the disk geometry, the prediction (1.3) gives a large N expansion
of the form

;F1=AN+BN 1�2+ 1
12 log N+C+ } } } (3.13)

As in the case of the sphere geometry, this prediction can be verified
analytically using the exact solution for the isotherm 1=2.(1) The exact
solution gives(11)

;F hard
2 =;f2N+;#2N 1�2+ 1

12 log N+O(1) (3.14)

where

;f2= 1
2 log(\b �2?2), ;#2=&- 2 |

�

0
dy log( 1

2 (1+erf y))

Some details of the expansion of ;F2 are different for the soft edge version
of the OCP in a disk (recall Section 1). From the exact formula

Zsoft
N, 2=?Ne3N2�4N &N 2�2(?\b)&N�2 G(N+1)

and the asymptotic expansion (3.5) we see that

;F soft
2 =;f2 N+

1
12

log N&`$(&1)&
1

720N 2+O \ 1
N 4+ (3.15)

Thus indeed both (3.1) and (3.15) contain the universal term (1�12) log N,
although (3.15) does not contain a surface tension term (this fact has been
noted previously in ref. 8).

At 1=4 and 1=6 we obtained exact numerical evaluation of the par-
tition functions (2.26), (2.27) and (2.28) (and the modification of (2.28) for
the soft disk case) as in the sphere case. Our results for the corresponding
value of ;F are contained in Table V. To test the prediction (3.1), we
sought to fit our data to the ansatz

;FN, 1=;f1N+B1N 1�2+K1 log N+C1+{D1�N,
0,

soft disk
hard disk

(3.16)

where ;f1 is given by (3.10) and (3.11) for 1=4 and 1=6 respectively,
and the choice in (3.16) is made retrospectively on the criterium of obtaining
better convergence.
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Tabel V. Exact Decimal Expansion of the Free Energy for the Hard and Soft
Disk at 1=4 and 1=6

N F hard
N, 4 ;F soft

N, 4

3 &6.07705853011644579848828232852953 &6.38430353764202167882687100789504
4 &8.30894530308837749094468707356467 &8.67246771929839719253598118439664
5 &10.5685824419856069054748395707000 &10.9817913623032469741300225072724
6 &12.8480499008173510151377678768908 &13.3060582270200975291371029447052
7 &15.1423987396644292302500680775824 &15.6414978836634761215222474874096
8 &17.4483520149155330139161065965798 &17.9856458201720068377211714643235
9 &19.7636864904052121059815096874218 &20.3368227969313363262711724430690

10 &22.0868149972503557220763154840028 &22.6938278975627003536283880871543

N F hard
N, 6 ;F soft

N, 6

3 &9.0582041809587470427592556776938317 &9.1916690110088058948684895153913657
4 &12.306265058620940233015626198772823 &12.467150515773535356614120708869630
5 &15.583591141405785588643527765993475 &15.769625685129047660199805300971936
6 &18.886678348734296934648840469575921 &19.095091912250933709000748332754870
7 &22.209056127812161704085770192533417 &22.437790137971372572352358156488860
8 &25.545482070626355796809539664033139 &25.793196864919170855940747024418097

Our results are obtained in Table VI. We see that for the hard disk at
1=4 our final estimate of K4 differs from 1�12 by only 2_10&4. At 1=6
we see that more data would be needed to get a stable sequence, although
the final estimates of K6 are consistent with the expected value of 1�12.

Table VI. Fit of the Ansatz (3.16) to the Data of Table V

N B hard
4 K hard

4 C hard
4 B soft

4 K hard
4 C soft

4 D soft
4

3, 4, 5, (6) 0.749371 0.059801 &0.091054 0.497409 0.120202 &0.052807 0.073687
4, 5, 6, (7) 0.728988 0.081365 &0.080181 0.509625 0.099801 &0.040616 0.040317
5, 6, 7, (8) 0.723951 0.087261 &0.078408 0.522124 0.076905 &0.022675 &0.004884
6, 7, 8, (9) 0.726340 0.084219 &0.078810 0.521397 0.078345 &0.024029 &0.001556

7, 8, 9, (10) 0.727263 0.082957 &0.078795 0.518587 0.084298 &0.030427 0.014202

N B hard
6 K hard

6 C hard
6 B soft

6 K soft
6 C soft

6

3, 4, 5 1.104506 &0.092158 &0.317518 0.967066 &0.059461 &0.248851
4, 5, 6 0.884919 0.140146 &0.200388 0.795791 0.121733 &0.157491
5, 6, 7 0.874984 0.151776 &0.196890 0.786513 0.132593 &0.154224
6, 7, 8 0.951461 0.054407 &0.209757 0.842635 0.061139 &0.163667

505Exact Finite-Size Study of 2D OCP



File: 822J 241518 . By:XX . Date:12:10:99 . Time:14:27 LOP8M. V8.B. Page 01:01
Codes: 1825 Signs: 1215 . Length: 44 pic 2 pts, 186 mm

3.3. Density and Two-Point Distribution

3.3.1. Density. Consider for definiteness the disk geometry with a
hard wall at 1=4. Using the formula (2.29) the density profile can be
calculated for up to 10 particles. One way to present the data is in graphi-
cal form with the boundary of the disk taken as the origin. This is done in
Fig. 1. The plot shows rapid convergence of the profiles near the boundary.

To investigate the rate of convergence of the whole profile as measured
from the boundary to the thermodynamic value we can investigate the con-
tact theorem.(4) This expresses the thermodynamic pressure in terms of the
density at contact with the wall, and the potential drop across the interface
(which in turn is proportional to the first moment of the density profile).
Explicitly the contact theorem states

\1&
1
4 + \b=\(0)&2?\b 1 |

�

0
x(\(x)&\b) dx (3.17)

where we stress again that the density is measured from the boundary.
Much to our initial surprise, the convergence of the r.h.s. to the l.h.s.

for the finite N data is very slow. For 10 particles the error is of order 300.

Fig. 1. Density profile in the hard disk case for several values of N at 1=4. The boundary
of the disk is taken as origin.
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Further investigation reveals that this is not special to the coupling 1=4.
At 1=2 we have the analytic expression(9)

\(1)(r)=
1

2?
:
N

j=1

(R&r)2j&2 e&?(R&r)2

�R
0 s2j&1e&?s2 ds

, 0�r�R

where r is measured from the boundary and the background density is
taken to equal unity. Choosing N=10 and substituting in (3.17) again
gives an error of order 300. Indeed choosing N=500 still gives an error
of order 30.

In fact the slow convergence of (3.17) can be understood analytically
by making use of a sum rule for the OCP applicable for the finite disk.(4)

This sum rule reads

\(1(0)&\1&
1
4 + \b=&

1\2
b?2

N |
R

0
r3(\(1)(R&r)&\b) dr (3.18)

where \(1)(r) is measured inward from the boundary. Noting that charge
neutrality requires

|
R

0
r(\(1)(R&r)&\b) dr=|

R

0
(R&r)(\(1)(r)&\b) dr

we can write

&
1\2

b?2

N |
R

0
r3(\ (1)(R&r)&\b) dr

=&
1\2

b ?2

N |
R

0
(R&r)3 (\(1)(r)&\b) dr

=&
1\2

b ?2

N |
R

0
(&2rR2+3r2R&r3)(\(1)(r)&\b) dr

=21\b? |
R

0
r(\(1)(r)&\b) dr&

31 (\b?)3�2

N 1�2 |
R

0
r2(\(1)(r)&\b) dr

+
1\2

b ?2

N |
R

0
r3(\(1)(r)&\b) dr

This shows that the finite size corrections to the r.h.s. of (3.18) are propor-
tional to N &1�2, thus explaining our empirical observation.

507Exact Finite-Size Study of 2D OCP



File: 822J 241520 . By:XX . Date:12:10:99 . Time:14:27 LOP8M. V8.B. Page 01:01
Codes: 1688 Signs: 1043 . Length: 44 pic 2 pts, 186 mm

Fig. 2. Two-point correlation in the sphere case for N=8 particles at 1=4 and 1=6.

3.3.2. Two-Point Function. At 1=2 and in the thermodynamic
limit the two-particle distribution function has the exact evaluation(9)

\(2)(0, r� )=\2
b(1&e&?\b |r� | 2

)

This is a monotonic function, with the corresponding truncated distribution
\T

(2)(0, r� ) :=\(2)(0, r� )&\(1)(0) \(1)(r� ) exhibiting Gaussian decay to zero.
There is evidence, both analytic and numerical(9, 6) which suggests that for
1>2 the two-particle distribution exhibits oscillations. At 1=4 this
feature has already been observed in the exact finite a N calculation of
\(2)(0, r� ) by Samaj et al.(18) Furthermore, this feature should become more
pronounced as 1 increases. This is indeed what we observe when plotting
our results for 1=4 and 1=6 on the same graph (see Fig. 2).

The fact that the 2dOCP is a Coulomb system in its conductive phase
implies that in the bulk the second moment of the truncated distribution
obeys the Stillinger�Lovett sum rule

|
R2

r� 2\T
(2)(0, r� ) dr� =&

2
?1

(3.19)
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For the hard disk in the finite system we can compute

|
|r� |<R

r� 2\T
(2)(0, r� ) dr� (3.20)

and compare it with the universal value given by (3.19). At 1=4 and with
N=9 we find agreement with the universal value to within 20. In fact,
analogous to the integral in (3.18), the integral (3.20) can be evaluated
exactly and the terms which differ from &2�?1 read off. In the hard wall
cause we find

|
|r� |<R

r� 2\T
(2)(09 , r� ) dr� =&

2
?1

(\(1)(0)�\b+N\T
(2)(0, R)�\2

b) (3.21)

while in the soft wall case the same expression results except that the
boundary term N\T

(2)(0, R)�\2
b is no longer present on the r.h.s., while on

the l.h.s. the integral is over R2.
We see from (3.21) that the deviation in the finite system from the

bulk value (3.19) is determined by

&
2

?1
((\(1)(0)&\b)�\b+N\T

(2)(0, R)�\2
b)

and thus consists of a bulk and surface contribution.

4. NEW SUM RULES

In this section we present the derivation of the sum rule (3.21) and its
generalization to multicomponent Coulomb systems. First we show that
the sum rule can be derived within the formalism of Section 2, then we
present a more general derivation of the sum rule.

4.1. The Case 1 Even

The formalism presented in Section 2 is valid only if 1 is an even
integer. Within this formalism we can use the expressions (2.31) and (2.32)
for the two-point correlation functions (and its generalizations to higher 1 )
to compute the second moment

|
4

r� 2\T
(2)(0, r� ) dr� (4.1)
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where 4 is a disk of radius R (hard disk) or R2 (soft disk). For example
in the hard disk case with 1=4, for each term in the sum (2.31) the
integral (4.1) gives an incomplete gamma function #(+j+2, 2N ). Then we
use the recurrence relation

#(+j+2, 2N )=(+j+1) #(+j+1, 2N )&e&2N(2N ) +j+1 (4.2)

to split the expression in two. The first term is proportional to \(1)(0) while
the second is proportional to \(2)(0, R). The sum rule (3.21) follows from
that.

The calculation can be easily generalized to any even 1. In the soft
disk case since the incomplete gamma functions are replaced by complete
gamma functions the recurrence relation (4.2) does not have a second term
on the r.h.s., therefore there is no surface contribution proportional to
\T

(2)(0, R) in the sum rule.

4.2. General Case

In fact a more general derivation of this sum rule, valid for any value
of the coupling constant, can be obtained by studying the variations of the
density as a function of the size of the disk.

Let us consider the general case of a multicomponent jellium in &
dimensions confined in a spherical domain 4 of radius R and volume
V=0&R&�& with 0&=2?&�2�1 (&�2). The system is composed of s different
species with charges (e:): # [1,..., s] and there are N: particles of the species :.
Let N=�: N: be the total number of particles and let us define the
average density of the species :, \:=N: �V and the total average density
\=N�V. As in the preceding sections \b is the background number density
and let eb be its charge so that the background charge density is eb \b . For
convenience let us define the ``number of particles of the background'' by
Nb=\b V. In general the Coulomb potential is

8(r� )={
&ln r, if &=2

(4.3)r2&&

&&2
, otherwise

and the Coulomb force is

F9 (r� )=&{8(r� )=
r�
r& (4.4)
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The Hamiltonian of the Coulomb system is

U=
1
2

:
i{ j

e:i
e:j

8(r� i&r� j )+eb\b :
N

i=1

e:i |
4

dr� 8(r� i&r� )

+
e2

b\2
b

2 |
42

dr� dr� $8(r� &r� $) (4.5)

We shall consider the correlation functions in the canonical ensemble

\(n)
:1 } } } :n

(r� 1 ,..., r� n)=� :

N:1

i1=1

} } } :

N:n

in=1

$(r� 1&r� :1 , i1
) } } } $(r� n&r� :n , in

)� (4.6)

The ( } } } ) is the average in the canonical ensemble and in the preceding
sums if some :a=:b we exclude the term ia=ib as usual.

In three dimensions in order to have a well defined thermodynamic
limit we shall restrict ourselves to the case where all electric charges e: have
the same sign and the background carries a opposite neutralizing charge.
In two dimensions we can also consider systems with charges of different
signs and eventually without background (\b=0) if the coupling contants
|;e:e# |<2 for, all pair of charges (e: , e#) of different signs.

4.2.1. Contact Theorem Sum Rule. The derivation of the sum
rule for the second moment of the two-point correlation function is similar
to that of the contact theorem for a spherical domain.(4) Let us first show
here the generalization of this contact theorem for the multicomponent
jellium. We consider the canonical partition function (times N !)

Q=|
4N

dr� N exp(&;U ) (4.7)

as a function of the volume V. We shall compute the thermodynamical
pressure p(%)=� log Q��V in two different ways. The derivative is done
at fixed number of particles and fixed Nb . In general using the scaling
r� =V 1�&r�~ we have

;p(%)=
� log Q

�V
=\&

;V N

Q |
4� N

dr�~ N �U(V 1�&r�~ )
�V

e&;U (4.8)

where 4� is a sphere of volume 1.

511Exact Finite-Size Study of 2D OCP



A first way to compute the derivative of U is by using the general
formula

�8(V 1�&r� )
�V

=&
1

&V
r� } F9 (r� ) (4.9)

This gives, together with the definition (4.5) of U,

;p(%)=\+
;

&V _|42
dr� dr� $ r� } F9 (r� &r� $) :

:, :$

e:e:$\ (2)
::$(r� , r� $)

+eb \b |
42

dr� dr� $(r� &r� $) } F9 (r� &r� $) :
:

e:\ (1)
: (r� $)

+
1
2

e2
b\2

b |
42

dr� dr� $(r� &r� $) } F9 (r� &r� $)& (4.10)

We can transform the preceding expression by using the first equation of
the BGY hierarchy

kBT {\:(r� )=e:\beb |
4

dr� $ F9 (r� &r� $) \ (1)
: (r� )

+|
4

dr� $ :
:$

e:e:$F9 (r� &r� $) \ (2)
::$(r� , r� ) (4.11)

The r.h.s of (4.11) appears in the first and second lines of (4.10). Replacing
it by the l.h.s of (4.11) we find

;p(%)=\+
;

&V _kBT |
4

dr� :
:

r� } {\ (1)
: (r� )

&eb\b |
42

dr� dr� $r� $ } F9 (r� &r� $) :
:

e:\ (1)
: (r� )

+
1
2

\2
be2

b |
42

dr� dr� $(r� &r� $) } F9 (r� &r� $)& (4.12)

The first term of the r.h.s of the preceding equation can be computed by
integration by parts while the others can be computed using the definition
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(4.4) of the Coulomb force F9 and Newton's theorem. This yields the follow-
ing expression for the thermodynamical pressure

;p(%)=:
:

\ (1)
: (R)+;eb \bR2&& \:

:

e:
N:

2
+eb

Nb

&+2+
&

;\beb

2R& |
4

dr� r2 :
:

e:\ (1)
: (r� ) (4.13)

The other way to compute the thermodynamical pressure is to use the
actual scaling properties of the Coulomb potential 8,

�8(V 1�&r�~ )
�V

={
&

1
2V

,

2&&
&V

8(r� ),

if &=2

otherwise
(4.14)

Substituting this expression in (4.8) gives

;p(%)=\+
;$&, 2

4 \Q2

V
&:

:

e2
:\: ++

&&2
&V

;(U) (4.15)

where Q=�: e: N:+ebNb is the total charge of the system.
Equating the two expressions (4.13) and (4.15) of the thermodynamic

pressure we find the generalization of the contact theorem

:
:

\ (1)
: (R)+

;eb\b

2R&&2 Q&
;eb\b

2R& |
4

dr� r2q(r� )

=\+$&, 2

;
4 \

Q2

V
&:

:

e2
:\: ++

&&2
&V

;(U) (4.16)

where q(r� )=�:e: \ (1)
: (r� )+eb\b is the local charge density.

4.2.2. Density-Charge Correlation Second Moment Sum
rule. Similar calculations lead to the second moment sum rule for the
density�charge truncated correlation function �; e; \ (2)

:; (0, r� ). Here we
consider the quantity

Q:=|
4N

dr� Ne&;U :
N:

i=1

$(r� i, :) (4.17)
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as a function of the volume V. Note that the density of the species : at the
center of the spherical domain is \ (1)

: (0)=Q: �Q. Like in the preceding
section we want to compute by two different ways the quantity Q&1 �Q: ��V.
Using the same scaling argument as before we have

1
Q

�Q:

�V
=

N&1
V

\ (1)
: (0)&;

V N

Q |
4� N

dr�~ N :
N:

i=1

$(V 1�&r�~ i, :)
�U(V 1�&r�~ )

�V
e&;U

(4.18)

Using Eq. (4.9) and the definition (4.5) of the Hamiltonian U we find

1
Q

�Q:

�V
=

N&1
V

\ (1)
: (0)+

;
&V _|42

dr� dr� $ r� } F9 (r� &r� $) :
;, #

e;e#\ (3)
:;#(0, r� , r� $)

+|
4

r� } F9 (r� ) e: :
;

e;\ (2)
:; (0, r� )

+eb \b |
42

dr� dr� $ :
;

e; \(2)
:; (0, r� ) r� } F9 (r� &r� $)

&eb \b |
42

dr� dr� $ r� $ } F9 (r� &r� $) :
;

e; \(2)
:; (0, r� )

+eb \b |
4

dr� r� } F9 (r� ) e: \ (1)
: (0)

+
1
2

e2
b\2

b |
42

dr� dr� $(r� &r� $) } F9 (r� &r� $) \ (1)
: (0)& (4.19)

Using the second BGY equation

kBT {r� \ (2)
:; (0, r� )=e;eb \b |

4
dr� $ F9 (r� &r� $) \ (2)

:; (0, r� )+e;e:F9 (r� ) \ (2)
:; (0, r� )

+|
4

dr� $ F9 (r� &r� $) :
#

e; e#\ (3)
:;#(0, r� , r� $) (4.20)

and then integration by parts

:
;

|
4

r� } {r� \ (2)
:; (0, r� )=&V :

;

\ (2)
:; (0, R)&&(N&1) \ (1)

: (0) (4.21)
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we can arrange expression (4.19) to find, after computing explicitly the
integrals involving F9 using Newton's theorem,

1
Q

�Q:

�V
=:

;

\ (2)
:; (0, R)&

;eb\b

2R& |
4

dr� r2 :
;

e;\ (2)
:; (0, r� )

+
;eb \b

2R&&2 \ (1)
: (0) _:

;

e;N;+
eb Nb

&+2& (4.22)

The second way for computing Q&1 �Q: ��V is by using directly
Eq. (4.14) into Eq. (4.18). This gives,

1
Q

�Q:

�V
=

N&1
V

\ (1)
: (0)+

;
4

$&, 2 _Q2

V
&:

;

e2
; N;& \ (1)

: (0)+
&&2
&V

;(U\̂ (1)
: (0))

(4.23)

where \̂ (1)
: (0)=�N:

i=1 $(r� i, :) is the microscopic density of :-particles at the
center of the domain 4.

Comparing the two expressions (4.22) and (4.23) of Q&1 �Q: ��V gives
a sum rule for the second moment of the density of : particles-electric
charge correlation function. The sum rule takes a nice form by considering
the truncated correlation function and making use of the contact sum rule
(4.16),

;eb\b 0&

2& |
4

dr� r2 :
;

e;\ (2) T
:; (0, r� )

=\ (1)
: (0)+

0&

&
R& :

;

\ (2) T
:; (0, R)+

2&&
&

;(U\̂ (1)
: (0)) T (4.24)

In the case of the two-dimensional OCP (&=2, s=1 and eb=&e1)
this is exactly the sum rule (3.21) announced in the preceding section,

|
|r� |<R

r� 2\T
(2)(09 , r� ) dr� =&

2
?1

(\(1)(0)�\b+N\T
(2)(0, R)�\2

b)

The sum rule (4.24) is in fact a series of s sum rules for the density�
charge correlation function �; e; \(2) T

:; (0, r� ) for each species :. By taking
the sum of these sum rules with the factors e: , we find a sum rule for the
charge�charge truncated correlation function S(0, r� )=�:, ; e:e;\ (2) T

:; (0, r� ),
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;eb \b0&

2& |
4

dr� r2S(0, r� )=:
:

e:\ (1)
: (0)+

0&

&
R& :

:, ;

e:\ (2) T
:; (0, R)

+
2&&

&
; �U :

:

e: \̂ (1)
: (0)�

T

(4.25)

4.2.3. Thermodynamic Limit of the Sum Rules

Canonical Ensemble. In order to study the relationship between
sum rules (4.24) and (4.25) and the Stillinger�Lovett sum rule, we need to
know the behavior of the correlation functions as they approach the ther-
modynamic limit. This behavior is different depending on the ensemble
used. In this section we continue to work in the canonical ensemble.

In general we shall suppose that in the thermodynamic limit the
system is in a fluid and conducting phase. In this case the density becomes
uniform in the thermodynamic limit \ (1)

: (0) � \: and

(\̂ (1)
: (0) U) T � (\:U) T=0 (4.26)

because in the canonical ensemble the density does not fluctuate.
Let us first consider the case of a multicomponent Coulomb system

without background (in two dimensions with small Coulomb couplings).
In that case Eq. (4.24) becomes

\ (1)
: (0)+

0&

&
R& :

;

\ (2) T
:; (0, R)=0 (4.27)

This equation (4.27) give us the behavior of the correlation functions as
they approach the thermodynamic limit

:
#

(2) T
:# (0, R)t&\\:�N (4.28)

This is a generalization of an already known result concerning the existence
of 1�N tails for the correlation functions of one component fluids with short
range forces.(15) However, for a neutral system taking the sum of Eq. (4.28)
with the coefficients e: show that the charge-total density correlation does
not have 1�N tails,

R& :
:#

e:\ (2) T
:# (0, R) � 0 (4.29)

It is likely that a similar behavior exists in the general case (\b{0,
&=2, 3), so it would be difficult to derive from (4.24) partial sum rules for
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the density�charge correlations in the thermodynamic limit because with
the 1�N tails, one cannot commute the thermodynamic limit with the
integration over the space. However, one can conjecture that although the
density�density correlations have 1�N tails, in the conductive phase the
total density�charge correlations do not have these tails as it is in the case
when \b=0. If this is true, and assuming that the convergence of the
charge�charge correlation function is uniform (in order to commute the
thermodynamic limit with the integration over the space), one can recover
the Stillinger�Lovett sum rule from the sum rule (4.25) for finite systems,

;0&

2& |
R&

dr� r2S(0, r� )=&1 (4.30)

The fact that we recover the Stillinger�Lovett sum rule is of course not a
proof of our conjecture, but at least it show that our conjecture is not in
contradiction with well known results.

Grand Canonical Ensemble. For systems with short range forces the
correlations functions do not have 1�N tails in the grand canonical ensemble
as they approach the thermodynamic limit.(15) We will show that this is
also the case for two-dimensional Coulomb systems with small couplings
when there is no charged background and assuming this is also the case in
general for a multicomponent jellium we will discuss the thermodynamic
limit of the partial sum rules.

The partial sum rules (4.24) obtained before are different in the grand
canonical ensemble. The grand canonical ensemble is parametrized by the
background density \b and s&1 fugacities [z#] used to fix s&1 average
densities \# , the remaining density fixed by electroneutrality. The grand
canonical version of the sum rules (4.24) can be obtained in a straight-
forward manner by adapting the calculations of the last section. However
special care should be taken because of the fluctuation of the average den-
sities in the grand canonical ensemble. These fluctuations add some extra
terms to sum rule (4.24),

;eb\b0&

2& |
4

dr� r2 :
;

e;\ (2) T
:; (0, r� )

=(\̂ (1)
: (0)) +

0&

&
R& :

;

\ (2) T
:; (0, R)&(N\̂ (1)

: (0)) T

+
2&&

&
;(U\̂ (1)

: (0)) T+$&, 2 �:
#

;e2
#

4
N# \̂ (1)

: (0)�
T

(4.31)
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To proceed with the discussion of the thermodynamic limit of this sum
rule, we need to use a relation that will allow us to simplify the terms on
the r.h.s. of Eq. (4.31) in the thermodynamic limit. This relation reads for
&=2 or 3,

\:&(N\:)T+
2&&

&
;(U\:) T+$&, 2 �:

#

;e2
#

4
N#\:�

T

=\b
�\:

�\b
(4.32)

This relation is a consequence of the scaling properties of the Coulomb
potential. To prove it, let us consider the thermodynamic grand canonical
pressure

;p~ (;, [z#], \b)= lim
V � �

V &1 ln 5(;, [z#], \b , V ) (4.33)

where 5 is the grand canonical partition function. Using the scaling
properties of the Coulomb potential we have for &=3

;p~ (;, [z:], \b)=*4;p~ (*;, [*&3�2z:], *&3\b) (4.34)

and for &=2,

;p~ (;, [z:], \b)=;p~ (;, [*&2(1&(;e2
: �4))z:], *&2\b) (4.35)

for any positive number *. Taking the derivative of these relations with
respect to *, then putting *=1 and using the usual thermodynamic rela-
tions yields for &=3,

p~ =
1
3

(H) +
1

2;
\&\b

�p~
�\b

=
1
3

(U)+
1
;

\&\b
�p~

�\b
(4.36)

and for &=2,

;p~ =:
: \1&

;e2
:

4 + \:+;\b
�p~

�\b
(4.37)

where (H) is the total internal energy (including the kinetic term). The
announced relation (4.32) follows from taking the derivative of (4.36) and
(4.37) with respect to the fugacities.

As before let us consider first the case \b=0 (in two dimensions for
systems with small couplings). Then Eq. (4.31) together with Eq. (4.32)
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shows that the grand canonical total density-partial density correlation
function does not exhibit any 1�N tails,

R& :
#

\ (2) T
:# (0, R) � 0 (4.38)

Now if we suppose that in the general case (\b{0, &=2, 3) this property
still holds and that the density-charge correlation functions converge
uniformly we recover the partial sum rules

;eb0&

2& |
R&

dr� r2 :
#

e#\ (2) T
:# (0, r� )=

�\:

�\b
(4.39)

that have been previously derived by Suttorp and van Wonderen(20) in the
three dimensional case. These equations also hold for two-dimensional
systems. One can recover the Stillinger�Lovett sum rule (4.30) by taking
the sum of these equations (4.39) with the factors e: and using electro-
neutrality. Notice that the condition (4.38) on the thermodynamic limit of
the two-point correlation function when one of the points is in the bound-
ary is different from the usual condition needed to prove the Stillinger�
Lovett(17) that the correlation function of the infinite system should decay
faster than 1�r&+2.

Notwithstanding the relation of the sum rules (4.24) and (4.31) with
the Stillinger�Lovett sum rule (4.30), let us stress that for finite systems
these sum rules are not screening sum rules like the Stillinger�Lovett sum
rule since for finite systems the screening of external charges does not exists
(because since the total electric charge is conserved, the excess of charge
can not leak out to infinity like it does in infinite systems). From the
derivation presented in the previous section it is clear that the new sum
rules should be seen more as a second order contact theorem rather than
a screening sum rule. Futhermore when there is no background (\b=0)
the relation with Stillinger�Lovett sum rule disappears because the term
containing the second moment of the density-charge correlation vanishes.

5. SUMMARY AND CONCLUSION

Expanding the power of the Vandermonde determinant that appears
in the Boltzmann factor of the 2dOCP in terms of simple orthogonal poly-
nomials we have been able to develop exact numerical solutions for values
of the coupling constant 1=4 and 1=6 for finite systems up to 11 and 9
particles respectively for different kinds of geometry (sphere, soft and hard
wall disk). With these solutions we have been able to test the prediction(11)
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of universal logarithmic finite size corrections to the free energy (1.3).
Studying the correlation functions has lead us to find a new sum rule (3.21)
similar to the Stillinger�Lovett sum rule for finite systems. This sum rule can
be derived within the formalism of Section 2, but can also be generalized
to higher dimension and multicomponent jellium systems (Eq. (4.24)).

Further applications of the formalism presented here are the study of
surface correlations which are expected to have a universal behavior at
large distances.(10) Also the formal expressions of the correlations functions
(2.31) and (2.32) could eventually be used to find higher order sum rules
or other general properties.
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